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Abstract

Axisymmetric contact problems for an elastic layer pressed by a rigid sphere or by a rigid flat cylinder are considered.

It is assumed that the layer rests on the rigid half-space with a near-boundary cylindrical excavitation which is filled

with a deformable material. This material is modelled by a Winkler medium. The Hankel integral transforms are

applied and the problems are reduced to the system of integral equations. The numerical analysis is performed to

investigate the contact parameters and the deflexion in the excavitation zone. Results are presented in diagrams. � 2002
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1. Introduction

The axisymmetric contact problem for an elastic layer on a rigid smooth base was studied by Lebedev
and Ufland (1958) and by Vorovich and Ustinov (1959). The boundary problems for a layer resting on the
rigid base involving a cylindical hole were considered by Valov (1964), Low (1964), Zakorko (1974),
Dhaliwal and Singh (1977), Grylitsky and Okrepky (1984) and Hara et al. (1990). The problems involving
an underground excavitation have the great practical importance in the geotechnics and mining engi-
neering.

In this paper two axisymmetric contact problems for the layer resting on the rigid base with cylindical
excavitation filled with the Winkler medium are solved.

The geometry of the contact problems is shown in Fig. 1. The rigid indentor is pressed by a load P into
the upper smooth boundary of an elastic homogeneous and isotropic layer of thickness H. Two important
cases of geometry of punch are considered: the sphere of a radius R (Fig. 1b) and the flat cylinder of a
radius l (Fig. 1c). The lower surface of the layer is supported by the rigid smooth base which is weaked by
the near-boundary cylindical excavitation of a radius a. This excavitation is supposed to be filled by a

International Journal of Solids and Structures 39 (2002) 4117–4131

www.elsevier.com/locate/ijsolstr

* Corresponding author.

E-mail address: pauk@ck-sg.p.lodz.pl (V.J. Pauk).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00229-9

mail to: pauk@ck-sg.p.lodz.pl


deformable material which can be treated as the Winkler medium of stiffness k. The problems are con-
sidered to be axisymmetric.

2. Distributed load solution

Firstly we consider the boundary problem shown in Fig. 1a. In this problem it is assumed that the
normal pressure rz on the upper surface of layer is given. The problem is described by the elasticity
equations

2ð1� mÞ oH
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þ ð1� 2mÞ o
oz

our
oz

�
� ouz

or

�
¼ 0

2ð1� mÞ oH
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ð1Þ

with the following boundary conditions

srzðr;HÞ ¼ 0; rP 0 ð2Þ

Nomenclature

a radius of the excavitation
gðrÞ function describing the punch profile
H thickness of the layer
J0ð�Þ Bessel function of the first kind
Kð�Þ complete elliptical integral of the first kind
k stiffness of the Winkler medium
l radius of the contact zone
lH radius of the contact zone in the Hertz problem
P load
PH load in the Hertz problem
pðrÞ contact pressure
R radius of the spherical indentor
r, z cylindrical coordinates
ur, uz elastic displacements
wðrÞ deflexion in the excavitation zone
d centre displacement of the punch
D ¼ o2

or2 þ 1
r

o
or þ o2

oz2 harmonic operator in the cylindrical coordinates
/ðr; zÞ Airy function
j ¼ l=a dimensionless ratio
j1 ¼ l=H dimensionless ratio
j2 ¼ a=H dimensionless ratio
k, l Lame constants
m Poisson’s ratio
rr, rz, srz stress components
# ¼ ð1�mÞkH

l dimensionless stiffness of the Winkler medium
� asterisks note the dimensionless values
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rzðr;HÞ ¼ �pðrÞ; 06 r6 l
0; r > l

�
ð3Þ

srzðr; 0Þ ¼ 0; rP 0 ð4Þ

uzðr; 0Þ ¼ 0; r > a ð5Þ

rzðr; 0Þ ¼ kuzðr; 0Þ; 06 r6 a ð6Þ
where the notation

H ¼ our
or

þ 1

r
ur þ

ouz
oz

is introduced.
The axisymmetric problem formulated above was solved using the Airy function /ðr; zÞ which satisfies

the biharmonic equation

DD/ðr; zÞ ¼ 0 ð7Þ

Fig. 1. Geometry of problems.
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Knowing this function, the displacements and stresses in the layer can be calculated by formulae (Sneddon,
1951)

urðr; zÞ ¼ � 1

1� 2m
o2/ðr; zÞ
oroz

uzðr; zÞ ¼
2ð1� mÞ
1� 2m

D/ðr; zÞ � 1

1� 2m
o2/ðr; zÞ
oroz

rzðr; zÞ ¼ ð3k þ 4lÞ o
oz

D/ðr; zÞ � 2ðk þ lÞ o
3/ðr; zÞ
oz3

srzðr; zÞ ¼ ðk þ 2lÞ o
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D/ðr; zÞ � 2ðk þ lÞ o

3/ðr; zÞ
oroz2

ð8Þ

The solution of Eq. (7) in the layer can be obtained by the Hankel transforms method and the function
/ðr; zÞ is presented in the form

/ðr; zÞ ¼
Z 1

0

f½AðaÞ þ azBðaÞ� coshðazÞ þ ½CðaÞ þ azDðaÞ� sinhðazÞgJ0ðarÞda ð9Þ

where the functions AðaÞ, BðaÞ, CðaÞ, DðaÞ are unknown and can be determinated from the boundary
conditions (2)–(6).

Note that the boundary conditions (5) and (6) on the lower surface of the layer is of a mixed type. This
fact does not permit to form a closed system of four equations for the functions AðaÞ, BðaÞ, CðaÞ, DðaÞ.
Satisfying with the help of formulae (8) and (9) the boundary conditions (2)–(4) we arrive at three equations
for the unknown functions. Solving these equations the functions AðaÞ, BðaÞ, CðaÞ, DðaÞ can be represented
by one function uðaÞ 
 a�3DðaÞ which is unknown.

In result of the describing procedure the solution of the problem (1), (2)–(4) can be presented in the form
(here solution is restricted to the normal stress and displacements on the surfaces of the layer which will be
used in future analysis)

rzðr; 0Þ ¼ �2ðk þ lÞ
Z 1

0

aF1ðaÞuðaÞJ0ðarÞda �
Z l

0

r0pðr0ÞSðr0; rÞdr0 ð10Þ

uzðr; 0Þ ¼
2ð1� mÞ
1� 2m

Z 1

0

uðaÞJ0ðarÞda ð11Þ

uzðr;HÞ ¼ 2ð1� mÞ
1� 2m

Z 1

0

F2ðaÞuðaÞJ0ðarÞda � 1� m
l

Z l

0

r0pðr0ÞR4ðr0; rÞdr0 ð12Þ

where

Sðr0; rÞ ¼
Z 1

0

aF2ðaÞJ0ðar0ÞJ0ðarÞda

R4ðr0; rÞ ¼
Z 1

0

F3ðaÞJ0ðar0ÞJ0ðarÞda

F1ðaÞ ¼
sinh2ðaHÞ � a2H 2

sinhðaHÞ coshðaHÞ þ aH

F2ðaÞ ¼
aH coshðaHÞ þ sinhðaHÞ
sinhðaHÞ coshðaHÞ þ aH

F3ðaÞ ¼
sinh2ðaHÞ

sinhðaHÞ coshðaHÞ þ aH

ð13Þ
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The function uðaÞ in the formulae (10)–(12) is unknown. For its determination the boundary conditions
(5) and (6) must be used. Satisfying with the help of the presentations (10) and (11) these boundary con-
ditions we arrive at the dual integral equation for the unknown function uðaÞ

Z 1

0

a F1ðaÞ
�

þ #

aH

�
uðaÞJ0ðarÞda ¼ � 1

2ðk þ lÞ

Z l

0

r0pðr0ÞS1ðr0; rÞdr0; 06 r6 a ð14Þ

Z 1

0

uðaÞJ0ðarÞda ¼ 0; r > a ð15Þ

The solution of this dual equation is postulated in the form

uðaÞ ¼
Z a

0

hðtÞ sinðatÞdt ð16Þ

where hðtÞ is a new unknown function. The form (16) satisfies automatically Eq. (15) and reduces Eq. (14)
after some calculations to the Fredholm equation of the second kind for the function hðtÞ

hðtÞ � 2

p

Z a

0

hðt0ÞR1ðt0; tÞdt0 þ
1

pðk þ lÞ

Z l

0

r0pðr0ÞR2ðr0; tÞdr0 ¼ 0; 06 t6 a ð17Þ

with the kernels

R1ðt0; tÞ ¼
Z 1

0

1

�
� F1ðaÞ �

#

aH

�
sinðat0Þ sinðatÞda

R2ðt0; tÞ ¼
Z 1

0

F2ðaÞJ0ðat0Þ sinðatÞda
ð18Þ

If the distribution pðtÞ is known, the function hðtÞ can be obtained as the solution of Eq. (17). Substi-
tuting the presentation (16) into formulae (11) and (12) we obtain the deflexion in the excavitation zone

wðrÞ 
 uzðr; 0Þ ¼
2ð1� mÞ
1� 2m

Z a

r
hðtÞ dtffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p ; 06 r6 a ð19Þ

and the normal displacements on the upper surface of the layer

uzðr;HÞ ¼ 2ð1� mÞ
1� 2m

Z a

0

hðt0ÞR3ðt0; rÞdt0 �
1� m

l

Z l

0

r0pðr0ÞR4ðr0; rÞdr0; rP 0 ð20Þ

where

R3ðt0; rÞ ¼ R2ðr; t0Þ ð21Þ

3. Integral equations of the contact problem

In the contact problem the normal stresses rzðr;HÞ ¼ �pðrÞ in the interaction area 06 r6 l are not
prescribed. They can be determinated satisfying the contact condition which in the case of a rigid punch is
written as

uzðr;HÞ ¼ d � gðrÞ; 06 r6 l ð22Þ
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Substituting (22) into formulae (20) gives the following integral equation

2ð1� mÞ
1� 2m

Z a

0

hðt0ÞR3ðt0; rÞdt0 �
1� m

l

Z l

0

r0pðr0ÞR4ðr0; rÞdr0 ¼ d � gðrÞ; 06 r6 l ð23Þ

This equation and that (17) together with the equilibrium condition

2p
Z l

0

r0pðr0Þdr0 ¼ P ð24Þ

stand the closed system of integral equations of the contact problem. The functions hðtÞ, pðrÞ are unknown.
The following particular case can be obtained from the system (17), (23) and (24):

(i) a layer resting on a smooth rigid base: a ¼ 0 or k ! 1ð# ! 1Þ, see Lebedev and Ufland (1958) and
Vorovich and Ustinov (1959);

(ii) a layer resting on a smooth rigid base with the empty excavitation: k ¼ 0 (# ¼ 0), see Valov (1964), Low
(1964), Zakorko (1974), Dhaliwal and Singh (1977), Grylitsky and Okrepky (1984) and Hara et al.
(1990);

(iii) a layer supported by a Winkler foundation: a! 1. Analogic plane problem was considered by Demp-
sey et al. (1990).

Introducing the dimensionless parameters

s ¼ t
a
; s0 ¼ t0

a
; q ¼ r

l
; q0 ¼ r0

l
; b ¼ aH ; p�ðqÞ ¼ l2

P
pðrÞ; h�ðsÞ ¼ l

1� m
H
P
hðtÞ;

d� ¼ l
1� m

l
P

d; g�ðqÞ ¼ l
1� m

l
P
gðrÞ ð25Þ

the system of governing integral equations (17), (23) and (24) can be rewritten

h�ðsÞ � 2j2

p

Z 1

0

h�ðs0ÞR�
1ðs0; sÞds0 þ 1

p

Z 1

0

q0p�ðq0ÞR�
2ðq0; sÞdq0 ¼ 0; 06 s6 1

2j1j2

Z 1

0

h�ðs0ÞR�
3ðs0; qÞds0 � j1

Z 1

0

q0p�ðq0ÞR�
4ðq0; qÞdq0 ¼ d� � g�ðqÞ; 06 q6 1

2p
Z 1

0

q0p�ðq0Þdq0 ¼ 1

ð26Þ

with the dimensionless kernels

R�
1ðs0; sÞ ¼

Z 1

0

1

�
� F �

1 ðbÞ �
#

b

�
sinðj2bs0Þ sinðj2bsÞdb

R�
2ðq0; sÞ ¼

Z 1

0

F �
2 ðbÞJ0ðj1bq0Þ sinðj2bsÞdb

R�
3ðs0; qÞ ¼ R�

2ðq; s0Þ

R�
4ðq0; qÞ ¼

Z 1

0

F �
3 ðbÞJ0ðj1bq0ÞJ0ðj1bqÞdb

F �
1 ðbÞ ¼

sinh2ðbÞ � b2

sinhðbÞ coshðbÞ þ b

F �
2 ðbÞ ¼

b coshðbÞ þ sinhðbÞ
sinhðbÞ coshðbÞ þ b

F �
3 ðbÞ ¼

sinh2ðbÞ
sinhðbÞ coshðbÞ þ b

ð27Þ
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Taking into account the integrals (Gradshteyn and Ryzhik, 1965)

Z 1

0

x�1 sinðaxÞ sinðbxÞdx ¼ 1

4
log

aþ b
a� b

� �2

Z 1

0

J0ðaxÞJ0ðbxÞdx ¼
2

p

a�1Kðba�1Þ; b < a

b�1Kðab�1Þ; b > a

(

the kernels R�
1ðs0; sÞ and R�

4ðq0; qÞ can be written in the forms displaying singular parts

R�
1ðs0; sÞ ¼ �#

4
log

s0 þ s
s � s

� �2

þ
Z 1

0

1
	

� F �
1 ðbÞ



sinðj2bs0Þ sinðj2bsÞdb

R�
4ðq0; qÞ ¼ 2

pj1q1

K
q2

q1

� �
þ
Z 1

0

F �
3 ðbÞ

	
� 1



J0ðj1bq0ÞJ0ðj1bqÞdb

ð28Þ

where the notations q1 ¼ maxðq0; qÞ, q2 ¼ minðq0; qÞ are introduced.
Let us observe that the functions 1� F �

1 ðbÞ, F �
2 ðbÞ and F �

3 ðbÞ � 1 decay exponentially for b ! 1. Thus
these functions can be written in the forms of a finite exponential series

1� F �
1 ðbÞ ¼

XM1

m¼1

Að1Þ
m e�mc1b

F �
2 ðbÞ ¼

XM2

m¼1

Að2Þ
m e�mc2b

F �
3 ðbÞ � 1 ¼

XM3

m¼1

Að3Þ
m e�mc3b

ð29Þ

where the constants Mk, ck, A
ðkÞ
m are unknown. For their determination the squared error method was used.

This approach, which was presented in paper Li and Dempsey (1990), is outlined in Appendix A.
Substituting the formulae (29) into (27) and (28) and using some integrals the kernels R�

1ðs0; sÞ;R�
2ðq0; sÞ

and R�
4ðq0; qÞ can be written in the forms

R�
1ðs0; sÞ ¼ �#

4
log

s þ s
s0 � s

h i2
þ
XM1

m¼1

Að1Þ
m

2mc1j
2
2s

0s

m2c21 þ ðs0 � sÞ2j2
2

h i
m2c21 þ ðs0 þ sÞ2j2

2

h i

R�
2ðq0; sÞ ¼

XM2

m¼1

Að2Þ
m

ffiffiffi
2

p
mc2j2s

Z1Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c22 þ q02j2

1 � s2j2
2 þ Z1Z2

p

R�
4ðq0; qÞ ¼ 2

pj1q1

K
q2

q1

� �
þ
XM3

m¼1

Að3Þ
m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c23 þ j2

1ðq0 þ qÞ2
q K

2j1

ffiffiffiffiffiffiffi
q0q

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c23 þ j2

1ðq0 þ qÞ2
q

0
B@

1
CA

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c22 þ ðj1q0 þ j2sÞ2

q
; Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c22 þ ðj1q0 � j2sÞ2

q

ð30Þ

The dimensionless deflexion in the excavitation region introduced by formula

w�ðqÞ ¼ 2ð1� mÞa
1� 2m

k þ l
P

wðrÞ
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in the accordance with (19) can be written as

w�ðqÞ ¼ j2

Z 1

q
h�ðs0Þ ds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s02 � q2
p ; 06 q6 1 ð31Þ

4. Contact of a rigid sphere with a layer

First example concerns with the contact problem of a rigid sphere of the radius R with a layer supported
by the base with an excavitation (Fig. 1b). In this case the function gðrÞ describing the punch geometry can
be written as

gðrÞ ¼ r2

2R

or in the dimensionless form (25)

g�ðqÞ ¼ 3

16

PH
P

l
lH

� �3

q2 ð32Þ

where PH and lH are, respectively, a load and contact radius in the Hertz problem, which are connected by
formula (Johnson, 1987)

l3H ¼ 3

8

ð1� mÞR
l

PH ð33Þ

Substituting the formula (32) into (26, part 2) we arrive at the system of integral equations of the
problem under consideration:

h�ðsÞ � 2j2

p

Z 1

0

h�ðs0ÞR�
1ðs0; sÞds0 þ 1

p

Z 1

0

q0p�ðq0ÞR�
2ðq0; sÞdq0 ¼ 0; 06 s6 1

2j1j2

Z 1

0

h�ðs0ÞR�
3ðs0; qÞds0 � j1

Z 1

0

q0p�ðq0ÞR�
4ðq0; qÞdq0 ¼ d� � 3

16

PH
P

l
lH

� �3

q2; 06 q6 1

2p
Z 1

0

q0p�ðq0Þdq0 ¼ 1

ð34Þ

Note that the contact radius l is unknown. If the value PH=P is given we can found the ratio l=lH by
solving Eq. (34) iteratively until the physical condition

p�ð1Þ ¼ 0 ð35Þ

will be satisfied. Here we applied another simple way: the contact area is assumed to be equal to that in the
Hertz problem (i.e. l=lH ¼ 1), but the ratio PH=P needed to obtain last relation is unknown. Then the
system of integral equations (34) is sufficient to determine the distribution h�ðsÞ, p�ðqÞ and values d�, PH=P .

Discretizing the contact region 06 q6 1 and excavitation zone 06 s6 1 into n pieces by points

q0
i ¼ ði� 0:5Þ=n; s0i ¼ q0

i; i ¼ 1; . . . ; n ð36Þ

respectively, the system (34) can be transformed to the equivalent system of linear algebraic equations
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h�ðq0
mÞ �

2j2

p

Xn
k¼1

h�ðq0
kÞB

ð1Þ
km þ 1

p

Xn
k¼1

p�ðq0
kÞB

ð2Þ
km ¼ 0; m ¼ 1; . . . ; n

2j1j2

Xn
k¼1

h�ðq0
kÞB

ð3Þ
km � j1

Xn
k¼1

p�ðq0
kÞB

ð4Þ
km � d� þ 3

16

PH
P

q2
m ¼ 0; m ¼ 1; . . . ; nþ 1

p
n2

Xn
k¼1

ð2k � 1Þp�ðq0
kÞ ¼ 1

ð37Þ

where

q0
i ¼ ði� 1Þ=n; i ¼ 1; . . . ; nþ 1

Bð1Þ
km ¼

Z qkþ1

qk

R1ðq0; q0
mÞdq0; Bð2Þ

km ¼
Z qkþ1

qk

q0R2ðq0; q0
mÞdq0; k;m ¼ 1; . . . ; n

Bð3Þ
km ¼

Z qkþ1

qk

R2ðqm; q0Þdq0; Bð4Þ
km ¼

Z qkþ1

qk

q0R4ðq0; qmÞdq0; k ¼ 1; . . . ; n; m ¼ 1; . . . ; nþ 1

ð38Þ

This system of 2nþ 2 equations is sufficient to determinate 2nþ 2 unknowns h�ðq0
iÞ, p�ðq0

iÞ, i ¼ 1; . . . ; n
and constants d�, PH=P .

Knowing the distribution h�ðq0
iÞ the deflexion in the excavitation zone (31) can be calculated as

w�ðqiÞ ¼ j2

Xn
k¼i
h�ðq0

kÞB
ð0Þ
km ; i ¼ 1; . . . ; nþ 1 ð39Þ

where

Bð0Þ
ik ¼

Z qkþ1

qk

dq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 � q2

i

p ; i ¼ 1; . . . ; nþ 1; k ¼ i; . . . ; n

The numerical analysis was performed to display the influence of the input dimensionless parameters #,
j, j2 on the distribution of the contact pressure p�ðqÞ, deflexion in the excavitation zone w�ðqÞ, ratio PH=P
and centre displacement d�.

It was disclosed that the excavitation has an influence on the contact pressure for thin (j2 > 1) layer
only. The distribution of the function p�ðqÞ in the contact zone for some values of the Winkler medium
stiffness # and fixed parameter j ¼ 1, j2 ¼ 2 is presented in Fig. 2a. By the dotted line the well-known result
(Johnson, 1987) for an elastic half-space

p�ðqÞ ¼ 3

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ð40Þ

is shown for a comparision. Generally, the excavitation causes the decreasing of the contact pressure in the
centre of contact zone. The result for # ¼ 100 is close to that in the contact problem for an elastic layer
resting on a rigid smooth base (Li and Dempsey, 1990).

The dependence of parameters PH=P and d� with the dimensionless stiffness # is shown in Fig. 3 for some
values of the layer thickness j2 and fixed ratio j ¼ 1. The value PH=P and displacement d� decrease for the
rising of the stiffness of the Winkler medium. This behaviour is more strong for a thin layer. Analysis of the
ratio PH=P permits to make the conclusion that the load P, needed to reach contact area l ¼ lH, decreases
for a empty excavitation. Thus, the general trend is that the excavitation yields the greater contact region.
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Fig. 2. Contact pressure distributions.

Fig. 3. Dependence of parameters PH=P and d� with the stiffness #.
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The deflexion of the layer lower boundary in the excavitation zone is presented in Fig. 4 as a function of
the dimensionless stiffness #, thickness of the layer j2 and ratio j. It is clear that this deflexion is maximal
for the small stiffness of the Winkler medium, for thin layer and for wide excavitation.

5. Contact of a rigid flat cylinder with a layer

In second example the punch is considered as a rigid flat cylinder of radius l (Fig. 1c) and function g�ðqÞ
can be written as

Fig. 4. Distributions of deflexion in the excavitation zone.
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g�ðqÞ ¼ 0 ð41Þ
Then the system of integral equations (26) of the problem under consideration has the following form

h�ðsÞ � 2j2

p

Z 1

0

h�ðs0ÞR�
1ðs0; sÞds0 þ 1

p

Z 1

0

q0q�ðq0ÞR�
2ðq0; sÞdq0 ¼ �p0Q1ðsÞ; 06 s6 1

2j1j2

Z 1

0

h�ðs0ÞR�
3ðs0; qÞds0 � j1

Z 1

0

q0p�ðq0ÞR�
4ðq0; qÞdq0 ¼ d�; 06q6 1

2p
Z 1

0

q0p�ðq0Þdq0 ¼ 1

ð42Þ

Note that in this problem the radius of the contact area is given and equal to the cylinder radius l. The
geometrical singularity at the edge of punch yields that the contact pressure is singular as q ! 1. To display
this fact let us present the function p�ðqÞ in the form

p�ðqÞ ¼ p0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p þ q�ðqÞ; 06q6 1 ð43Þ

where the regular function q�ðqÞ is a new unknown and the constant p0, which can be treated as a stress
intensity factor at the punch edge, is also unknown.

Substituting the presentation (43) into (42) we arrive at the close system of integral equations for un-
knowns h�ðqÞ, q�ðqÞ, p0 and d�

h�ðsÞ � 2j2

p

Z 1

0

h�ðs0ÞR�
1ðs0; sÞds0 þ 1

p

Z 1

0

q0q�ðq0ÞR�
2ðq0; sÞdq0 ¼ �p0Q1ðsÞ; 06 s6 1

2j1j2

Z 1

0

h�ðs0ÞR�
3ðs0; qÞds0 � j1

Z 1

0

q0q�ðq0ÞR�
4ðq0; qÞdq0 ¼ d� þ p0Q2ðqÞ; 06 q6 1

2p
Z 1

0

q0q�ðq0Þdq0 ¼ 1� 2pp0

ð44Þ

Fig. 5. The dependence of parameters p0 and d� with the stiffness #.
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where

Q1ðsÞ ¼
1

pj1

Z 1

0

b�1F �
2 ðbÞ sinðj1bÞ sinðj2bsÞdb

Q2ðqÞ ¼
Z 1

0

b�1F �
3 ðbÞ sinðj1bÞJ0ðj1bqÞdb

Here the integrals (Gradshteyn and Ryzhik (1965))Z 1

0

qdqffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ¼ 1;

Z 1

0

qJ0ðaqÞdqffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ¼ a�1 sinðaÞ

are used.

Fig. 6. Distributions of deflexion in the excavitation zone.
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Similarly to (37), we obtain the discretization scheme for Eq. (44) in the following form

h�ðq0
mÞ �

2j2

p

Xn
k¼1

h�ðq0
kÞB

ð1Þ
km þ 1

p

Xn
k¼1

q�ðq0
kÞB

ð2Þ
km þ p0Q1ðq0

mÞ ¼ 0; m ¼ 1; . . . ; n

2j1j2

Xn
k¼1

h�ðq0
kÞB

ð3Þ
km � j1

Xn
k¼1

q�ðq0
kÞB

ð4Þ
km � d� � p0Q2ðqmÞ ¼ 0; m ¼ 1; . . . ; nþ 1

p
n2

Xn
k¼1

ð2k � 1Þq�ðq0
kÞ þ 2pp0Q0 ¼ 1

ð45Þ

This system of 2nþ 2 linear algebraic equations is sufficient to determinate 2nþ 2 unknowns h�ðq0
iÞ,

q�ðq0
iÞ, i ¼ 1; . . . ; n and constants d�, p0.

Knowing the distributions h�ðq0
iÞ, q�ðq0

iÞ and p0 the deflexion w�ðqiÞ can be calculated from formula (39)
and the contact pressure from that (43).

The distribution of the contact pressure is presented in Fig. 2b for various values of the dimensionless
stiffness # and j ¼ 1, j2 ¼ 2. For stiff Winkler medium (# ¼ 100) the result is closed to the solution of the
contact problem for an elastic layer resting on a rigid base (Li and Dempsey, 1990). Decreasing of the
stiffness yields the falling of the contact pressure in centre of the contact area. For # ¼ 0 (hollow excavi-
tation) the separation of the contact zone is observed. This result is observed for a thin layer only. The
Hertz distribution

p�ðqÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ð46Þ

is presented in Fig. 2b by the dotted line.
Fig. 5 shows the dependences of parameters p0 and d� with the Winkler medium stiffness. The deflexion

in the excavitation zone w�ðqÞ in the dependence of the parameters #, j, j2 is presented in Fig. 6. The
numerical results obtained for the flat cylinder are in general similarity with those for the rigid sphere. Some
differences presented in Fig. 6b for the wide excavitation (j2 ¼ 2:0) are explained by the contact region
separation, which takes place in this case.

Appendix A

Let the function gðfÞ decays exponentially for f ! 1. We approximate this function by a function ĝgðfÞ,
which is defined as

ĝgðfÞ ¼
XM
m¼1

ame�mbf ðA:1Þ

where the constants am, m ¼ 1; . . . ;M and are determinated by the summation of the squared error

S ¼
XL
l¼1

gðflÞ
h

� ĝgðflÞ
i2

ðA:2Þ

The minimizing conditions

oS
oak

¼ 0; k ¼ 1; . . . ;M ðA:3Þ

gives the system of equations for the determination of the constants am, m ¼ 1; . . . ;M
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XM
m¼1

am
XL
l¼1

exp½
(

� ðmþ kÞbfl�
)

¼
XL
l¼1

gðflÞ expð�kbflÞ; k ¼ 1; . . . ;M ðA:4Þ

which can be simplified if the points fl, l ¼ 1; . . . ; L are chosen as

fl ¼ lfmax=L; l ¼ 1; . . . ; L ðA:5Þ

Thus

XL
l¼1

exp½�ðmþ kÞbfl� ¼
XL
l¼1

almk ¼
1� aLþ1

mk

1� amk
; k ¼ 1; . . . ;M ðA:6Þ

where

amk ¼ exp½�ðmþ kÞbfmax=L� ðA:7Þ

and the system (A.4) can be transformed

XM
m¼1

am
1� aLþ1

mk

1� amk

� �
¼

XL
l¼1

gðflÞ expð�kbflÞ; k ¼ 1; . . . ;M ðA:8Þ

The constant b is determinated iteratively from the condition of the value S minimum. The accuracy of
this method is provided by the choice of constants M, L and fmax.
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