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Abstract

Axisymmetric contact problems for an elastic layer pressed by a rigid sphere or by a rigid flat cylinder are considered.
It is assumed that the layer rests on the rigid half-space with a near-boundary cylindrical excavitation which is filled
with a deformable material. This material is modelled by a Winkler medium. The Hankel integral transforms are
applied and the problems are reduced to the system of integral equations. The numerical analysis is performed to
investigate the contact parameters and the deflexion in the excavitation zone. Results are presented in diagrams. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The axisymmetric contact problem for an elastic layer on a rigid smooth base was studied by Lebedev
and Ufland (1958) and by Vorovich and Ustinov (1959). The boundary problems for a layer resting on the
rigid base involving a cylindical hole were considered by Valov (1964), Low (1964), Zakorko (1974),
Dhaliwal and Singh (1977), Grylitsky and Okrepky (1984) and Hara et al. (1990). The problems involving
an underground excavitation have the great practical importance in the geotechnics and mining engi-
neering.

In this paper two axisymmetric contact problems for the layer resting on the rigid base with cylindical
excavitation filled with the Winkler medium are solved.

The geometry of the contact problems is shown in Fig. 1. The rigid indentor is pressed by a load P into
the upper smooth boundary of an elastic homogeneous and isotropic layer of thickness H. Two important
cases of geometry of punch are considered: the sphere of a radius R (Fig. 1b) and the flat cylinder of a
radius / (Fig. 1¢). The lower surface of the layer is supported by the rigid smooth base which is weaked by
the near-boundary cylindical excavitation of a radius a. This excavitation is supposed to be filled by a
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Nomenclature

a radius of the excavitation

g(r) function describing the punch profile
H thickness of the layer

Jo(-)  Bessel function of the first kind
K(-)  complete elliptical integral of the first kind

k stiffness of the Winkler medium

/ radius of the contact zone

lu radius of the contact zone in the Hertz problem
P load

Py load in the Hertz problem

p(r) contact pressure

R radius of the spherical indentor

r, oz cylindrical coordinates

u., u, elastic displacements

w(r)  deflexion in the excavitation zone

0 centre displacement of the punch

A= % —&-% % + % harmonic operator in the cylindrical coordinates
¢(r,z) Airy function

k = I/a dimensionless ratio

k) = [/H dimensionless ratio

k2 = a/H dimensionless ratio

Al Lame constants

v Poisson’s ratio

0., 0., T,. Stress components

Y= % dimensionless stiffness of the Winkler medium
* asterisks note the dimensionless values

deformable material which can be treated as the Winkler medium of stiffness k. The problems are con-
sidered to be axisymmetric.

2. Distributed load solution
Firstly we consider the boundary problem shown in Fig. la. In this problem it is assumed that the

normal pressure o, on the upper surface of layer is given. The problem is described by the elasticity
equations

201-0L —2v)a<a”"—a”2) ~0

or O0z\ 0z Or ()
(6IC) 10 Ou, Ou,

21— )2 (1= 2)- = - -

(1=v)5 = V>rar(”az ”ar) 0

with the following boundary conditions

1.(r,H)=0, r=0 (2)
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Fig. 1. Geometry of problems.
_ 7}7(”)7 0 < r< )
o) = { P S G)
7.(r,0) =0, r=0 4)
u(r,0) =0, r>a (5)
0.(r,0) = ku,(r,0), 0<r<a (6)
where the notation
Ou, 1 Ou,
O=5 Tt

is introduced.

The axisymmetric problem formulated above was solved using the Airy function ¢(r,z) which satisfies
the biharmonic equation

AAP(r,z) =0 (7)
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Knowing this function, the displacements and stresses in the layer can be calculated by formulae (Sneddon,
1951)

1 @¢(r2)
u(r2) = ~1-3, ore

C2(1-v) 1 2¢(r2)
u,(r,z) = =2y Ag(r,z) — 1-2v oroz (8)

) ., 0(r2)
0.(r2) = (32 +4) - Ap(r,2) = 202 + p) — 5
3 r,z

1.(r,z) = (A + 2M)§A¢(r,z) —2(A+p) s ;),(6272 )

The solution of Eq. (7) in the layer can be obtained by the Hankel transforms method and the function
¢(r,z) is presented in the form

o(r,z) = /Ox{[A(cx) + azB(a)] cosh(oz) + [C(a) + 0zD(a)] sinh(az) }Jo (o) dot 9)

where the functions 4(«), B(a), C(a), D(a) are unknown and can be determinated from the boundary
conditions (2)—(6).

Note that the boundary conditions (5) and (6) on the lower surface of the layer is of a mixed type. This
fact does not permit to form a closed system of four equations for the functions 4(«), B(x), C(x), D(x).
Satisfying with the help of formulae (8) and (9) the boundary conditions (2)—(4) we arrive at three equations
for the unknown functions. Solving these equations the functions 4(a), B(a), C(a), D(a) can be represented
by one function ¢(«) = o3D(«) which is unknown.

In result of the describing procedure the solution of the problem (1), (2)—(4) can be presented in the form
(here solution is restricted to the normal stress and displacements on the surfaces of the layer which will be
used in future analysis)

0.(r,0) = —2( + ) /0 o () (o)Jo (o) ot — /0 Y p(r)S( F) dr (10)
w.(r,0) = 21( 1__2? /0 " (o)) da (11)
u(r,H) = 21(17_2:) /OOCFz(oc)(p(oc)Jo(acr) do — ! ; Y /0 (X Ry(¥ ,r)dr (12)

where
S, r) = / o (o) Jo (or’ ) o (o) dot
0

Ry(F,r) = /OOOF}(a)JO(ar')JO(ocr) do

sinh?(aH) — o2 H>

Fie) = sinh(aH) cosh(aH) + oH (13)
Fola) — oH cosh(aH) + sinh(aH)

2(2) = sinh(aH ) cosh(aH ) + oH
B () sinh”(aH)

- sinh(oH ) cosh(aH) + oH
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The function ¢(«) in the formulae (10)—(12) is unknown. For its determination the boundary conditions
(5) and (6) must be used. Satisfying with the help of the presentations (10) and (11) these boundary con-
ditions we arrive at the dual integral equation for the unknown function ¢(o)

/000 o {Fl (o) + %] ¢(a)Jo(or) do = —m /0 Fp(¥)S (¥, r)d¥, 0<r<a (14)
/C>O o) Jo(ar)da =0, r>a (15)
0

The solution of this dual equation is postulated in the form

() = /Oah(t) sin (o) dt (16)

where A(¢) is a new unknown function. The form (16) satisfies automatically Eq. (15) and reduces Eq. (14)
after some calculations to the Fredholm equation of the second kind for the function A(¢)

a i
wo-= [ h(t’)Rl(t’,t)dt’—km/o PR, ) dF =0, 0<i<a (17)

with the kernels

*© 0
Ri(7,1) = 1 — Fi(a) — — | sin(o') sin(ot) dot
Ry(f,1) :/ F (o) Jo (o) sin(aut) dot

If the distribution p(¢) is known, the function 4(z) can be obtained as the solution of Eq. (17). Substi-
tuting the presentation (16) into formulae (11) and (12) we obtain the deflexion in the excavitation zone

- _2(1—v) [* dr
w(r) = u.(r,0) = T3 /r h(t) — 0<r<a (19)
and the normal displacements on the upper surface of the layer
2(1 — “ 1 - !
w(r 1) = 2= / h(E)Rs (¢, r)dl — —— / Fp()Ry(F 1) dr,  r=0 (20)
1-2v Jo H 0
where
Ry(,r) = Ry(r, ) (21)
3. Integral equations of the contact problem
In the contact problem the normal stresses g.(r, H) = —p(r) in the interaction area 0 <r</ are not

prescribed. They can be determinated satisfying the contact condition which in the case of a rigid punch is
written as

u(r,H)=06—-g(r), 0<r<l (22)
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Substituting (22) into formulae (20) gives the following integral equation

2(1—\)) ¢ / / / l—v
R _
Ty /Oh(t) 3(¢,r)df .

This equation and that (17) together with the equilibrium condition
i
2n/ Fp(¥)dr =P (24)
0

stand the closed system of integral equations of the contact problem. The functions (), p(r) are unknown.
The following particular case can be obtained from the system (17), (23) and (24):

7
/ Po(FRy(r,r)dr =6 —g(r), 0<r<! (23)
0

(i) a layer resting on a smooth rigid base: @ = 0 or k — oo(} — o0), see Lebedev and Ufland (1958) and
Vorovich and Ustinov (1959);

(i1) a layer resting on a smooth rigid base with the empty excavitation: £k = 0 (9 = 0), see Valov (1964), Low
(1964), Zakorko (1974), Dhaliwal and Singh (1977), Grylitsky and Okrepky (1984) and Hara et al.
(1990);

(i) a layer supported by a Winkler foundation: a — oco. Analogic plane problem was considered by Demp-
sey et al. (1990).

Introducing the dimensionless parameters

t , r , i I’ . uw H
T_;v T_Ev p_?v p_77 B_OCHv p(p)_Fp(r)’ h(T)—l_th(l),
. wo ! wo !
st ts oy H L 25
T, p% &P =7 580 (25)
the system of governing integral equations (17), (23) and (24) can be rewritten

2 : 1!

h*(t) — % / ()R (7', 7)de’ + - / p'P (PR (p',1)dp =0, 0<t<1
0 0
1 1

2K11 / W (7)Ry(7', p)de’ — Ky / PP (P)Ry(p',p)dp = 0" —g"(p), 0<p<l (26)

0 0

1
2n / PP (p)dp' =1
0
with the dimensionless kernels
RI(,1) = / [1 —Fp) _Z] sin(,B7') sin(x287) df
0

Ry(pf, ) = / F (B o1 o) sin () df
Ri(7,p) = R5(p,7)
R p) = /0 F(B)h(0ca B! Vol fip) AP

sinh’(B) — 7

(27)

Fr(p) = sinh(f) cosh(B) + fB
() = f cosh(f) + sinh(f)

2 () = sinh(p) cosh(B) + B
7 (p) = ——mn 1P)

~ sinh(f) cosh(pB) + B
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Taking into account the integrals (Gradshteyn and Ryzhik, 1965)

x , 1. [a+b]
-1 e —1
/o x~ sin(ax) sin(bx) dx 7 log L — b}

2 { a'K(ba™), b<a

Jo(ax)Jy(bx)dx = —
/0 olaxpo(br)dr =2 bK(ab™), b>a

the kernels R} (7', 7) and R;(p’, p) can be written in the forms displaying singular parts

Ri(7,7) = Y log [T,j_ T} + /00 [1— F(B)] sin(i ') sin(x2 fr) df
: - (28)
Riro) = (22 ) 4 [T 1) = 1t (o) 0

where the notations p, = max(p’, p), p, = min(p’, p) are introduced.
Let us observe that the functions 1 — F{*(f), F5(f) and F; (ff) — 1 decay exponentially for f — co. Thus
these functions can be written in the forms of a finite exponential series

M
L= Fr(p) = 3 A
m=1

M)

F(B) =) Afe! (29)

m=1

M;
BB 1= 3 A
m=1

where the constants M;, y;, A¥) are unknown. For their determination the squared error method was used.
This approach, which was presented in paper Li and Dempsey (1990), is outlined in Appendix A.

Substituting the formulae (29) into (27) and (28) and using some integrals the kernels R; (7', 1), R;(p’, 1)
and R;(p’, p) can be written in the forms

v U B 2
e[S
T s [
) = S 4O V2my, Kyt
R = ZA"’ 22 4 0212 _ 12,2
m=1 ZiZo\/m¥ys + pit — T3 + Zi 2 (30)
2 Ms 1 5 :
R =k () 34 . K/TP
A AP T e+ \ R+ )

Z = \/mz"/% + (Kip +101), Z = \/mz“/§ + (k1p' — K1)
The dimensionless deflexion in the excavitation region introduced by formula

2(1 = v)a J
(I—vaitp

R e T

(r)
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in the accordance with (19) can be written as

vwmzmzﬁw»————

4. Contact of a rigid sphere with a layer

First example concerns with the contact problem of a rigid sphere of the radius R with a layer supported
by the base with an excavitation (Fig. 1b). In this case the function g(r) describing the punch geometry can
be written as

r2

g(’”)zﬁ

or in the dimensionless form (25)

3P,
(p)=——1|— 32
g'(p) 16P{1H}p (32)
where Py and /g are, respectively, a load and contact radius in the Hertz problem, which are connected by
formula (Johnson, 1987)
3(1-v)R
hi=g b (33)
Substituting the formula (32) into (26, part 2) we arrive at the system of integral equations of the
problem under consideration:

2 ! 1!
h*(r)—% / W (R (¢, 7) 4+ / o'p (0B (0, 1) dp' =0, 0<T<1
0 0
! w( I\ Dk (] / : 1w IND¥[ A ’ * 3PH ) } 2
2K1K2/ R (7 )Ry (', p)dr —m/ PP (PR (p',p)dp =06" ———|+—| p°, 0<p<lI (34)
o o 16 P | Iy

1
2n / PP (p)dp" =1
0

Note that the contact radius / is unknown. If the value P;/P is given we can found the ratio ///y by
solving Eq. (34) iteratively until the physical condition

p(1)=0 (35)

will be satisfied. Here we applied another simple way: the contact area is assumed to be equal to that in the

Hertz problem (i.e. //l;; = 1), but the ratio Py/P needed to obtain last relation is unknown. Then the

system of integral equations (34) is sufficient to determine the distribution 4*(t), p*(p) and values 6*, Py /P.
Discretizing the contact region 0 < p <1 and excavitation zone 0 <7< 1 into n pieces by points

= (i—08)/n, T=p, i=1l...n (36)

respectively, the system (34) can be transformed to the equivalent system of linear algebraic equations
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* 2K - * / 1 ‘ >k
W (p) === D W (P)By +— > P (0B =0, m=1,....n

k=1 k=1

.3 P
ZKlKZZh pk km Klzp pk km_é 16 P 2 :07 mzl?an+1 (37)

TS k- () = 1

where

pi=3G-1/n, i=1,....n+1

(1 _ Pt o / 2 _ Pt /N, ,
B, = Ri(p',p,)dp’s By, = PR:p,p))dp's kom=1,....n
Pk Pk (38)
(3) _ P ’ / “4) _ P ’ / / _ . o
B, = Ry(p,,,p)dp', B, = PRi(pp,)dp’, k=1,...0ny m=1,....n+1
Pk Pk
This system of 2n 4 2 equations is sufficient to determinate 2n + 2 unknowns 4#*(p!), p*(p}), i=1,...,n
and constants 6, Py /P.
Knowing the distribution 4*(p}) the deflexion in the excavitation zone (31) can be calculated as
(p) =12 H(p})By, i=1,....n+1 (39)
=
where
Pr+1 do’
BY = p i=1,...n+1; k=i...n

o PP —pl

The numerical analysis was performed to display the influence of the input dimensionless parameters ¥,
K, Ky on the distribution of the contact pressure p*(p), deflexion in the excavitation zone w*(p), ratio Py /P
and centre displacement 4”.

It was disclosed that the excavitation has an influence on the contact pressure for thin (x; > 1) layer
only. The distribution of the function p*(p) in the contact zone for some values of the Winkler medium
stiffness ¥ and fixed parameter k = 1, k, = 2 is presented in Fig. 2a. By the dotted line the well-known result
(Johnson, 1987) for an elastic half-space

pWﬂ:% 1 — p? (40)

is shown for a comparision. Generally, the excavitation causes the decreasing of the contact pressure in the
centre of contact zone. The result for ¥ = 100 is close to that in the contact problem for an elastic layer
resting on a rigid smooth base (Li and Dempsey, 1990).

The dependence of parameters Py/P and 6 with the dimensionless stiffness + is shown in Fig. 3 for some
values of the layer thickness k, and fixed ratio k = 1. The value Py /P and displacement 6" decrease for the
rising of the stiffness of the Winkler medium. This behaviour is more strong for a thin layer. Analysis of the
ratio Py/P permits to make the conclusion that the load P, needed to reach contact area / = /i, decreases
for a empty excavitation. Thus, the general trend is that the excavitation yields the greater contact region.
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Fig. 2. Contact pressure distributions.
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1.20 [ ) KZZO-2 -0.20
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e =10
1o — — half—space —0.25 |-
g
100 g\ — — — — — — — — — — — — — -0.30
=2 Q
0.90 —0.35 =
0.80 | 9 —0.40'\;
10 20 30 40 0

Fig. 3. Dependence of parameters Py /P and ¢° with the stiffness .
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Fig. 4. Distributions of deflexion in the excavitation zone.

The deflexion of the layer lower boundary in the excavitation zone is presented in Fig. 4 as a function of
the dimensionless stiffness ¢, thickness of the layer x, and ratio k. It is clear that this deflexion is maximal
for the small stiffness of the Winkler medium, for thin layer and for wide excavitation.

5. Contact of a rigid flat cylinder with a layer

In second example the punch is considered as a rigid flat cylinder of radius / (Fig. 1¢) and function g*(p)
can be written as



4128 M. Wozniak et al. | International Journal of Solids and Structures 39 (2002) 4117-4131

gp)=0 (41)
Then the system of integral equations (26) of the problem under consideration has the following form
* 2K2 * 1 1 Ios( INDR( A /
(1) h ORI(T, 1) dT +— [ p'q ()R (P, 1) dp" = —poQi(1), O<e<]
0
1 1
2Kk / R (Z)R3 (7, p)d7’ — Ky / PP (P )Ry (p',p)dp =07, 0<p<1 (42)
0 0

1
2n / PP (p)dp' =1
0

Note that in this problem the radius of the contact area is given and equal to the cylinder radius /. The
geometrical singularity at the edge of punch yields that the contact pressure is singular as p — 1. To display
this fact let us present the function p*(p) in the form

ﬁ@—7%:+ﬂ»

where the regular function ¢*(p) is a new unknown and the constant p,, which can be treated as a stress

intensity factor at the punch edge, is also unknown.
Substituting the presentation (43) into (42) we arrive at the close system of integral equations for un-

0<p<l (43)

knowns #*(p), ¢*(p), po and 0"
§ 2k, . 1,
W (7) /h IR0 [ R Dd = -pi(e), 0
0
1 1
21K / h*(Z)R5(7, p) dr’ — Ky / p'q (P )Ri(p', p)dp" = 0"+ poOs(p), 0<p<I (44)
0 0

1
21 / p'q’ (p')dp = 1= 2npy
0

-0.10 T T T ]
(a) (b)

o
Ny
(e}
1

o-e-ooo KZIO.Q ]
0.18 s8-8 K'2="—045 -0.15 i~

— — half—space

—£
ol — o — ' - o = -0.20
S & a
o
0.14 025 — — — — — — — — — — — — -
o000 0.2
G-5-8-5-8 K2:O~5
bk K2=1.0
012 ! I ! 19 g3l — — half—space
0 10 20 30 40 w

Fig. 5. The dependence of parameters py and 6" with the stiffness 9.
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where
1o :
Ql(r):n—xl/o b F () sin(x; p) sin(x,f7)df
0:(p) = [ 5B sintc P ) o5

Here the integrals (Gradshteyn and Ryzhik (1965))

1 1
d J d .
_pde [ ehan)de G
0o y/1—p? 0o \1—p?
are used.
5020 0.2 0.4 0.6 0.8 190 o.ooo'o

~0.01 -0.02

-0.04

—0.027 :‘M/e'
-0.06 |~
-0.03 :
-0.08
—0.04 ,0;_—-0 eeooo kK,=0.1
v=1 -0.10 - 2
ottt =5 sese-0 k,=0.5
-0.05 = PR 19:100 -0.12 K‘2=2‘O
w ' w
O.OOO'O Q.2 0.4 0.6 0.8 1_0/0

-0.01

-0.02

-0.03

-0.04 seeeo =05
=00 k=1
———— k=2

-O.OSL —— k=10

w

Fig. 6. Distributions of deflexion in the excavitation zone.
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Similarly to (37), we obtain the discretization scheme for Eq. (44) in the following form

* 2K . * 1 . *
W (o) =2 K (B 2 3 (B +@(2) =0, m=1...
k=1
2K1K22h* pk km Klzq pk km _6*_p0Q2(pm):O7 m = 1a7n+1 (45)
= Z (2k = 1)g*(p}) + 2npoQo = 1

This system of 2n + 2 linear algebraic equations is sufficient to determinate 2n 4+ 2 unknowns 4*(p}),
g*(p}), i=1,...,n and constants J¢", py.

Knowing the distributions 7*(p}), ¢*(p}) and p, the deflexion w*(p,) can be calculated from formula (39)
and the contact pressure from that (43).

The distribution of the contact pressure is presented in Fig. 2b for various values of the dimensionless
stiffness ¥ and k = 1, k, = 2. For stiff Winkler medium (9 = 100) the result is closed to the solution of the
contact problem for an elastic layer resting on a rigid base (Li and Dempsey, 1990). Decreasing of the
stiffness yields the falling of the contact pressure in centre of the contact area. For 14 = 0 (hollow excavi-
tation) the separation of the contact zone is observed. This result is observed for a thin layer only. The
Hertz distribution

. 1
p(ﬂ)—27t s

is presented in Fig. 2b by the dotted line.

Fig. 5 shows the dependences of parameters py and 6" with the Winkler medium stiffness. The deflexion
in the excavitation zone w*(p) in the dependence of the parameters ¥, k, k, is presented in Fig. 6. The
numerical results obtained for the flat cylinder are in general similarity with those for the rigid sphere. Some
differences presented in Fig. 6b for the wide excavitation (i, = 2.0) are explained by the contact region
separation, which takes place in this case.

(46)

Appendix A

Let the function g({) decays exponentially for { — co. We approximate this function by a function g({),
which is defined as

M
6(0) = ane™" (A.1)
m=1
where the constants a,,, m = 1,..., M and are determinated by the summation of the squared error
L 2
S=) [g(éz) - g(cz)} (A.2)
=1
The minimizing conditions
oS
—=0, k=1,....M A3
dap e (A3)

gives the system of equations for the determination of the constants a,,, m=1,..., M
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L
Z Zexp (m+k)pe)) Zg ) exp(—kBe), k=1,....M (A4)
which can be simplified if the points {;,, / = 1,...,L are chosen as
gl:lCmaX/L7 121,,L (AS)
Thus
L 1 _ aL+1
> exp[—(m + k)BL] = Zamk a'"k . k=1,....M (A.6)
mk
where
Amk = exp[— (m + k)ﬁCmax/L} (A7)

and the system (A.4) can be transformed

M _ L+l L
Zam{l o }:Zg(mexm—kﬁc,), k=l...M o
=1

1 1- Amk

The constant f is determinated iteratively from the condition of the value S minimum. The accuracy of
this method is provided by the choice of constants M, L and (..
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